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Abstract. Super-Resolution (SISR) is a computer vision task that aims
to generate high-resolution images from their low-resolution counter-
parts. Typically, Super-Resolution methods use scaling factors of x2, x3,
or x4 to uniformly enhance the resolution of the entire image. However,
some acquisition devices, such as 360° cameras, produce images with non-
uniform resolution across the frame. In this work, we propose to adapt
state-of-the-art efficient methods for Single Image Super-Resolution to
address the challenge of restoring images affected by spatially varying
degradations. Specifically, we focus on the method that won the recent
NTIRE 2024 Efficient Super-Resolution Challenge. For our experiments,
synthetic images with different spatially varying types of degradation are
generated, and the SISR method is specifically modified and trained to
effectively handle such challenging scenarios. In addition to evaluating
the developed method with traditional image quality metrics such as
PSNR and SSIM, we also assess its practical impact on a downstream
object detection task. The results on the WIDER FACE face-detection
dataset, using the YOLOvS8 object detection model, show that applying
the proposed SISR approach to images with spatially varying degra-
dations produces artifact-free outputs and enables object detectors to
achieve superior performance compared to their application on degraded
images.

Keywords: Single image super-resolution - Spatially varying
degradation - Efficient - Deep learning

1 Introduction

Single Image Super-Resolution (SISR) is a computer vision task aimed at enhanc-
ing the resolution of low-quality images. It has various applications, includ-
ing medical imaging, satellite image processing, and surveillance [31]. With the
advent of deep learning, various methods based on Deep Neural Networks have
been proposed and have surpassed traditional methods in various research areas.
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As a result, even in the research area of Super-Resolution (SR), new methods
based on neural networks have been proposed, which are able to obtain better
results than traditional techniques [29]. However, despite the progress made by
deep learning models, many algorithms require considerable computational and
memory capacity, making them difficult to adopt on a large scale or in contexts
where resources are limited, as in the case of mobile devices and real-time appli-
cations. To this end, the NTIRE Efficient Super-Resolution Challenge [23] was
organized, in which participants develop Super-Resolution methods that are as
efficient as possible, where efficiency is evaluated in terms of metrics such as run-
time, number of parameters, and computational complexity measured in FLOPs.
These methods increase the resolution of their input images equally across the
entire image; however, there are acquisition devices that generate images that
do not have constant resolution. Certain sensors generate images that have spa-
tially variable resolution, as in the case of 360° cameras, cameras with fish-eye
lenses, and even acoustic imaging devices. In these scenarios, it can be useful
to obtain images with constant resolution without losing information about the
details of the content. This topic is still poorly addressed in the literature; in
fact, when super-resolution is described, the focus is on the ability of the meth-
ods to increase resolution and image quality only in cases where degradation
is constant, and these methods are not designed to work well in situations in
which images have uneven resolution. The aim of this work is to evaluate the
ability of Efficient Super-Resolution (ESR) methods to enhance images with
spatially varying resolution. In order to do so, the winner of the NTIRE 2024
Efficient Super-Resolution challenge [23], SPAN [27], has been modified, trained
and tested for this purpose. The model has been trained for such situations and
tested on various types of degradation to observe whether it could improve the
quality of the input images. Lastly, to test the impact of the application of these
methods, SPAN was used in combination with YOLOv8 [9] on a face detection
dataset to which spatially varying degradations were applied. Various tests were
conducted to assess the YOLO model’s ability on the face detection task when
images present spatially varying resolution.

2 Related Works

Efficient Single Image Super-Resolution. Thanks to the recent rapid devel-
opment of deep learning techniques, various Single Image Super-Resolution
(SISR) methods based on neural networks have been proposed and have out-
performed traditional approaches. SRCNN [4] is one of the first deep learning
methods applied to the Super-Resolution task, and it is used to learn the map-
ping between a low-resolution image and its high-resolution version. A disadvan-
tage of SRCNN is that it is computationally inefficient as it works in the space
of high-resolution images, since the input image is resized before being processed
by the network. In order to address this problem, ESPCN [26] proposed the use
of a subpixel convolutional layer called PixelShuffle, which has been used by var-
ious methods to increase image resolution only at the end of the method. Other
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methods used a different approach, such as SRGAN [13], which is one of the
first and most influential applications of the Generative Adversarial Networks
[7] for SISR. Recently, SwinlIR [14] has been proposed, which is based on Swin
Transformers [16] and achieves state-of-the-art results while reducing the number
of parameters. Despite the improvements, many methods still require intensive
computations or many resources, which may hinder the ability to implement
these models even on low-resource devices such as mobile devices. To this end,
the NTIRE Efficient Super-Resolution Challenge [23] was organized with the
aim of designing methods that are as efficient as possible while still maintaining
good quality results. During the various editions of this challenge, many meth-
ods have been proposed that are capable of achieving impressive results despite
being relatively small and without requiring many resources [10,15,27,30]. To
do so, the various teams that participated in the challenge have employed vari-
ous techniques such as reparameterization, knowledge distillation, and network
pruning.

Spatially Varying Blur. Super-resolution can be conceptualized as a two-step
process: image upsampling to increase spatial resolution, followed by deblur-
ring to enhance details and recover high-frequency information. While modern
approaches integrate these steps into a unified process, where both resolution
enhancement and detail recovery are jointly optimized, image upsampling is a
simple task and most of the complexity lies in the image deblurring task. Some
approaches in the state of the art [5,6] address the combined problem of Super-
Resolution and deblurring by explicitly breaking it down into the two stages
previously described, i.e. upsampling and deblurring.

Image deblurring is a classic, well-studied computer vision problem. CNN-
based models excel at learning data-driven representations and can adapt to a
wide range of blur types without explicitly modeling the blur kernel. These meth-
ods have shown remarkable performance improvements over traditional tech-
niques, particularly in handling real-world blurs [33]. However, most of the meth-
ods assume that the blur is uniform across the entire image. This task becomes
more complex when the image presents a spatially varying blur. Several meth-
ods have been developed to address these challenges leveraging advancements in
computational algorithms, optimization and deep learning. An early approach
[20] approximates the blur contained in various regions with a spatially varying
kernel using a combination of spatially invariant ones. Then the deblurring is
applied to the single regions. Early deep learning deblurring methods were then
implemented to remove uniform blur from images such as the method proposed
by Schuler et al. [25] which is divided into two stages: the first estimates the blur
kernel and the latent image from the blurry image, the second utilizes the blurry
image and the latent one to predict the blur kernel. However, real-world images
may contain spatially variable blur. In order to address this type of degrada-
tion, various methods have been proposed, especially to restore blur caused by
moving objects [11,19,24]. Aljadaany et al. [2] proposed DrNet which does not
require any estimate of the blur kernel and is further able to invert the effects
of the blurring in blind image recovery tasks allowing it to obtain state-of-the-
art results on the GoPro dataset [21] and results close to the state of the art
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on other datasets while maintaining a low inference time. Others address the
problem of spatially varying blur in SR images, such as DMBSR [12], which is
capable of achieving better results than other traditional SR methods on images
with non-uniform blur.

3 Proposed Method
3.1 Degraded Images

Gathering real-world images that are characterized by spatially-varying resolu-
tion with their respective counterpart with uniform resolution is a very complex
task, since it requires a pair of perfectly geometrically aligned images with two
different resolutions in terms of spatial level of detail. For this reason, a syn-
thetically generated dataset is employed in this work, in order to facilitate the
experiments discussed in the following sections. To have more control over the
type of degradation employed, and the images obtained, it is necessary to gener-
ate synthetically degraded images with higher resolution in certain parts of the
image and lower in others. Given that super-resolution can be conceptualized as
a two-step process, namely image upsampling and image deblurring, with the
second one being the most critical one, we focus solely on the latter. Three dif-
ferent types of spatially varying degradation are here used: linear, radial, and
random. To simulate a change in resolution, the Gaussian filter and a series of
masks are used to make a gradual transition from the original image to the image
with the filter applied. The masks used are images with values in the [0,1] range,
such that, when applied to the original image, if the values are 1, the output
will be the same as the original, while if the values are 0 the output will be
the image with the applied Gaussian filter. This results in a blur-like effect that
varies along the dimensions of the image itself. Let I,,;4 be the original image,
mask the mask used with values between [0,1] and Ij,,, the image on which the
Gaussian filter was applied, then the degraded image I4¢4 is obtained as:

Lieg = Iorig © mask + Iyyr © (1 — mask) (1)

where ©® denotes the element-wise multiplication. By doing so, it is possible to
generate images that have a variable blur-like effect by simulating a change in
resolution. Figure 1 shows an example of each degradation applied to a checker-
board image with the respective mask applied on it. In these cases, it is possible
to observe the different spatially varying blur effects obtained using different
degradations. In both linear and radial degradations the loss in detail is con-
stant from the center of the image, where it is present a higher resolution, to the
sides where a stronger blur is applied. The difference between the two cases is
that in the linear case the transition occurs only along the horizontal axis, while
in the radial degradation this takes place also along the vertical axis. Likewise
to the first case, with the random degradation, the transition occurs only along
the width of the image; however, it is not constant but random. The random
mask applied to each image varies for each randomly degraded image. For this
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(a) Ground truth (b) Linear (c) Radial (d) Random

Fig. 1. Images obtained by applying the different degradations. The degraded images
are obtained by applying the Eq.(1) with the respective mask on the ground truth
image. The masks are those in the top right corner of each degraded image, and a pixel
value closer to white means a pixel closer to the original.

purpose, random value distributions are used to generate masks, allowing the
simulation of random transitions from the original images to the images with
the Gaussian filter applied.

3.2 Method Changes

During the experiments described in the next sections, two versions of SPAN [27]
have been used. The difference between the two is the number of feature channels
employed and therefore the number of parameters. For convenience, the smaller
model and winner of the challenge is denoted SPAN-s, while the bigger one is
referred to as SPAN. In the first case, the number of feature channels employed
by the convolutional layers is 28 and in the second is 48. In both cases, the models
were initially trained for 4 x upsampling, with a 4x PixelShuffle as the final layer.
However, since the image dimensions in our case remain unchanged, the models
have been adapted to generate outputs with the same resolution as the input
(i.e. the PixelShuffle layer was removed) while enhancing the level of detail. Then
the models have been trained to handle the new spatially varying degradations.
Both the versions have been trained with the same training configuration, that
is: batch size of 16, initial learning rate of le~* that is reduced every 10,000
iterations by a factor of 0.1, L1 loss function, Adam optimizer and 20,000 as the
number of training iterations. The working environment employed during the
following tests utilizes a Nvidia RTX 4070S GPU.

4 Experimental Results
4.1 ESR Methods for Spatially Varying Resolution

To assess the ability of Efficient Super-Resolution (ESR) models in handling
images with spatially varying resolution, the SPAN models, modified as described
in Sect. 3.2, have been trained from scratch on degraded images. The training
was conducted using three versions of the DIV2K dataset [1], each modified to
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Table 1. PSNR and SSIM obtained by applying the methods to the images in the test
set. The best values contained in each column are listed in bold.

Model BSD100
Linear Radial Random
PSNRT SSIMT PSNRT SSIM7T PSNR7T SSIMT
Degraded || 30.1696 0.9078 27.2973 0.8140 31.4426 0.9137
SPAN 30.9011 0.9210 34.9025 0.9608 32.4254 0.9306
SPAN-s 31.3135 0.9310 31.8414 0.9287 32.5441 0.9409
Model Mangal09
Linear Radial Random
noentry PSNRT SSIMT PSNRT SSIMT PSNR7T SSIMT
Degraded || 28.8745 0.9450 25.7212 0.8878 29.2848 0.9368
SPAN 30.2921 0.9582 35.4847 0.9797 30.9768 0.9548
SPAN-s | 30.4650 0.9604 31.5764 0.9633 30.8488 0.9547
Model Set5
Linear Radial Random
PSNRT SSIMT PSNRT SSIMT PSNR7T SSIMT
Degraded || 31.4673 0.9488 29.1126 0.9081 30.2307 0.9093
SPAN 32.6783 0.9588 37.2752 0.9801 31.6903 0.9276
SPAN-s 33.2132 0.9638 34.5581 0.9684 32.5492 0.9457
Model Set14
Linear Radial Random
PSNRT SSIMT PSNRT SSIMT PSNR7T SSIMT
Degraded || 29.9072 0.9192 27.5581 0.8575 31.9502 0.9425
SPAN 30.4842 0.9276 35.2481 0.9691 32.6576 0.9516
SPAN-s 31.1062 0.9402 32.4917 0.9540 32.4463 0.9568
Model Urbanl100
Linear Radial Random
PSNRT SSIMT PSNRT SSIMT PSNR7T SSIMT
Degraded || 22.6222 0.7307 21.9710 0.6920 22.4069 0.7141
SPAN 25.4023 0.9381 24.8156 0.8189 25.6190 0.8388
SPAN-s 24.6988 0.8159 24.5486 0.8114 24.4617 0.8052

incorporate a specific degradation: linear and radial degradations were applied
using the same mask across all images, while for random degradation, a unique
random mask was generated for each image. Similarly, for testing, three degraded
versions were created for each of the BSD100 [17], Mangal09 [18], Set5 [3], Set14
[32], and Urbanl00 [8] datasets.

Table 1 reports the PSNR and SSIM values, computed by comparing the
degraded images and the outputs of the different methods against the original
images. The results indicate that the models are able to effectively enhance image
quality, making them more similar to the original counterparts and yielding
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Table 2. PSNR value obtained by applying the SPAN-s model trained to handle the
degradations present in the first column, on images degraded with the degradation
present in the first row. The Average column contains the mean value obtained for
each row.

Test

Train Linear |Radial | Random | Average
Linear |35.597530.2463 |35.6630 |33.8197
Radial |31.9280|36.573831.6145 |33.5968
Random | 35.4167 | 30.4630 | 35.5504 |33.8725

higher PSNR and SSIM values than the degraded images. Moreover, despite the
differences in model parameters, both versions are able to successfully improve
degraded images achieving comparable PSNR and SSIM scores, with the only
exception being SPAN-s trained on radially degraded images, which exhibits
lower PSNR values compared to its larger counterpart.

Further experiments were conducted to assess the SPAN-s model’s gener-
alization ability on degradations it was not specifically trained for, with the
corresponding PSNR values reported in Table 2. As expected, the highest PSNR
values appear along the diagonal, corresponding to models tested on the same
degradation type they were trained for. However, when applied to different degra-
dation types, the models yield varying results. Notably, models trained on linear
degradation perform well not only on their own degradation but also on random
degradation, and vice versa. This is likely due to the fact that, unlike radial
degradation, both linear and random cases involve resolution changes only along
the image width. The radial case, on the other hand, exhibits uneven resolution
even along the height of the image. Despite this, it still achieves better results
on other degradation types when compared with the PSNR obtained by the
other two methods in the radial degradation case. On average the models obtain
similar results despite the differences in terms of degradations.

Figure 2 illustrates visual results for an image extracted from the test set.
Notably, along the edges in both the linear and radial cases, certain details
remain partially unrecovered. Therefore, even though the models are able to
restore many of the details contained in the images, they still struggle in the
areas where the degradation is stronger.

4.2 Efficient Super-Resolution for Face Detection

In order to evaluate the effectiveness of applying an Efficient Super-Resolution
(ESR) method to images with spatially varying resolution, the previous discussed
models were integrated into a face detection pipeline as preprocessing step. A
subset of the WIDER Face dataset [28] was used for both training and evalua-
tion, applying the degradations described in Sect.3.1. The dataset was divided
into 1,000 images for training, 200 for validation, and 500 for testing. Three dif-
ferent versions of YOLOvS [9], with different sizes, were used as object detection
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Fig. 2. Example result: a) original image; b) images degraded with their respective
masks (linear, radial, and random); c) images restored with SPAN-s; d) SSIM value
maps obtained by the original image and the restored one; e) the respective PSNR
value maps. For all maps, a brighter color means larger errors, i.e. a lower level of
details.

model to check the consistency of the results: Yolo8n, Yolo8s and Yolo8m. These
models were fine tuned for 20 epochs using the same training configuration, with
a learning rate of 0.01 and AdamW as the optimizer. Training was conducted
on three different sets: the original images, the degraded images, and the images
restored using the Super-Resolution methods. The top part of Table 3 reports the
results obtained by the YOLO models on the restored test set,comparing their
performance with models trained on the original (unmodified) images, degraded
images, and restored images. The results are reported in terms of: Precision,
indicating how many detections were correct; Recall, indicating the ratio of the
instances identified by the model with respect to all instances of objects; mAP50,
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Table 3. Results obtained by the different versions of YOLO on the considered WIDER
FACE Test set. Top table: the Original rows contain the values obtained by train-
ing the different versions of YOLO on the original images (without the degradation);
the Degraded rows contain the results obtained by the YOLO models trained on the
degraded images; the SPAN and SPAN-s rows contain the results obtained by the
YOLO models trained on the restored images using the respective model. Bottom table:
results obtained by testing the versions of YOLO trained using the original images on
the degraded images and on the images restored using the SPAN and SPAN-S models.
In bold are marked the best results obtained by the models trained on the restored or
degraded images, while the second best are underlined.

Model Linear Radial Random
P R |mAP50 mAP50-95, P R |mAP50 mAP50-95 P R |mAP50| mAP50-95
Original | Yolo8n |0.783|0.480| 0.561 0.282 0.783 | 0.480| 0.561 0.282 0.783 1 0.480| 0.561 0.282

Degraded | Yolo8n | 0.740 | 0.455 | 0.518 0.255 0.737 | 0.450 | 0.519 0.252 0.785| 0.439 | 0.518 0.255
SPAN | Yolo8n | 0.756 | 0.471 | 0.544 0.271 0.788| 0.463 | 0.544 0.268 0.774 | 0.476 | 0.546 0.265
SPAN-s | Yolo8n | 0.767 | 0.453 | 0.530 0.259 0.772 | 0.447 | 0.530 0.263 0.778 | 0.459 | 0.533 0.259
Original | Yolo8s |0.795|0.508 | 0.603 0.316 0.795 | 0.508 | 0.603 0.316 0.795 | 0.508| 0.603 0.316
Degraded | Yolo8s | 0.779 | 0.460 | 0.546 0.282 0.797 | 0.460 | 0.555 0.281 0.881| 0.452 | 0.550 0.283
SPAN | Yolo8s | 0.782 | 0.494 | 0.586 0.301 0.805| 0.499 | 0.594 0.306 0.789 | 0.490 | 0.582 0.300
SPAN-s | Yolo8s | 0.790 | 0.488 | 0.574 0.295 0.797 | 0.487 | 0.583 0.296 0.771 | 0.481 | 0.565 0.291
Original |Yolo8m | 0.8250.514| 0.618 0.331 0.8250.514| 0.618 0.331 0.8250.514| 0.618 0.331
Degraded | Yolo8m | 0.786 | 0.486 | 0.571 0.298 0.807 | 0.466 | 0.568 0.299 0.770 | 0.477 | 0.564 0.292
SPAN | Yolo8m | 0.794 | 0.505 | 0.589 0.309 0.806 | 0.507 | 0.604 0.317 0.804 | 0.502 | 0.590 0.306
SPAN-s | Yolo8m | 0.783 | 0.496 | 0.591 0.311 0.814 | 0.489 | 0.593 0.312 0.779 | 0.493 | 0.580 0.303
Model Linear Radial Random

P R |mAP50 mAP50-95 P R |mAP50 mAP50-95 P R |mAP50| mAP50-95
Original | Yolo8n | 0.783 | 0.480| 0.561 0.282 0.7830.480| 0.561 0.282 0.783/0.480| 0.561 0.282

Degraded | Yolo8n | 0.757 | 0.447 | 0.525 0261 0.762 | 0.426 | 0.506 0.251 0.756 | 0.437 | 0.517 0.255
SPAN | Yolo8n |0.785| 0.463 | 0.549 0.274 | 0.779 | 0479 | 0.553 0.276 | 0.768 | 0.479 | 0.550 0.275
SPAN-s | Yolo8n | 0.749 | 0.474 | 0.544 0.271 0.760 | 0.470 | 0.543 0.270 0.767 | 0.456 | 0.537 0.266
Original | Yolo8s | 0.795 |0.508 | 0.603 0.316 | 0.795 |0.508 | 0.603 0.316 | 0.795 | 0.508| 0.603 0.316
Degraded | Yolo8s | 0.816 | 0.440 | 0.551 0.285 0.772 | 0.431 | 0.535 0.275 0.761 | 0.447 | 0.542 0.276
SPAN | Yolo8s |0.822| 0.477 | 0.587 0.306 |0.819 0.486 | 0.594 0.308 | 0.802| 0.488 | 0.587 0.304
SPAN-s | Yolo8s | 0.806 | 0.475 | 0.577 0.298 0.766 | 0.492 | 0.579 0.299 0.774 | 0.472 | 0.564 0.290
Original | Yolo8m|0.825/0.514| 0.618 0.331  |0.825|0.514 | 0.618 0.331 | 0.825|0.514| 0.618 0.331
Degraded | Yolo8m | 0.807 | 0.472 | 0.565 0.298 0.794 | 0.464 | 0.559 0.290 0.799 | 0.459 | 0.559 0.291
SPAN | Yolo8m | 0.812 | 0.501 | 0.603 0.321 | 0.797 |0.517| 0.611 0.324 0.797 | 0.504 | 0.601 0.316
SPAN-s | Yolo8m| 0.810 | 0.488 | 0.593 0.313 0.793 | 0.502 | 0.596 0.313 0.821 | 0.465 | 0.577 0.305

i.e. mean average precision calculated at an intersection over union (IoU) thresh-
old of 0.50; mAP50-95, i.e. the average of the mean average precision calculated
at varying IoU thresholds, ranging from 0.50 to 0.95 [22]. Since we are interested
in the overall assessment of model performance, the reference metric to consider
is mAP. The obtained results show that, in all observed cases, models trained
on images enhanced by a Super-Resolution method outperform those trained
directly on degraded images.

More specifically, models incorporating the trained Super-Resolution meth-
ods to correct degradations achieve higher mAP values than those that do
not, though their performance remains slightly below that of models trained
on the original images. Figure3 provides visual examples of face detections
using SPAN-s for restoration and Yolo8n for detection. These examples high-
light that applying restoration methods leads to more accurate detections and
an increased number of detected faces. The bottom part of Table 3 also reports
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(c) Radial (d) Random

(e) Linear (f) Radial (g) Random
SPAN-s SPAN-s SPAN-s

Fig. 3. Results obtained by using Yolo8n in the various analyzed cases. Where there
is a stronger degradation (e.g., the areas in the red boxes) the methods that use the
restored images detect more faces or are more accurate in localization. (Color figure
online)

the results of YOLO models trained on original images and tested on both
degraded and restored versions. In these cases, the models consistently achieve
better performance on enhanced images than on degraded ones. This indicates
that, even when trained solely on unmodified images, the models benefit from
Super-Resolution preprocessing, improving detection performance despite not
fully recovering all lost details.

5 Conclusions

This paper presents an investigation of the use of Efficient Super-Resolution
(ESR) techniques to restore images with spatially varying degradations. By lever-
aging lightweight ESR models, we demonstrated their effectiveness in recovering
image details and enhancing the visual quality of degraded images, particularly
in scenarios with uneven resolution artifacts. Furthermore, we showcased the
practical impact of ESR-restored images on downstream tasks, such as object
detection, using the WIDER FACE dataset in conjunction with YOLOv8. The
results underline how applying ESR methods significantly improves object detec-
tion performance compared to models operating on degraded images, though
there is still a gap compared to models trained on pristine data.

While ESR models offer a computationally efficient solution, their perfor-
mance is currently surpassed by more advanced methods, such as Transformer-
based super-resolution models (e.g., SwinIR). Future work could focus on inte-
grating lightweight Transformer-based architectures to better handle spatially
varying degradations while maintaining efficiency. Another key limitation of this
study is the reliance on synthetic datasets to simulate varying resolutions due
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to the lack of real-world datasets containing such degradations. Developing a
dedicated real-world dataset, including images captured with devices prone to
spatially varying degradations, such as 360° cameras, fish-eye lenses, or sonars,
would provide a more robust basis for evaluation. As future work we plan to
extend our method to other application domains, such as medical imaging,
remote sensing or autonomous driving, which often encounter spatially varying
resolution issues due to the nature of sensors used (e.g., sonars, radars, lidars,
optical and electron microscopes), and where enhanced resolution may signif-
icantly improve interpretability and decision-making. We also plan to extend
our method without making any assumptions about the degradation kernel thus
permitting to experiment with real data even in absence of a higher resolution
groundtruth.
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