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Abstract. Super-Resolution (SISR) is a computer vision task that aims 
to generate high-resolution images from their low-resolution counter-
parts. Typically, Super-Resolution methods use scaling factors of x2, x3, 
or x4 to uniformly enhance the resolution of the entire image. However, 
some acquisition devices, such as 360◦ cameras, produce images with non-
uniform resolution across the frame. In this work, we propose to adapt 
state-of-the-art efficient methods for Single Image Super-Resolution to 
address the challenge of restoring images affected by spatially varying 
degradations. Specifically, we focus on the method that won the recent 
NTIRE 2024 Efficient Super-Resolution Challenge. For our experiments, 
synthetic images with different spatially varying types of degradation are 
generated, and the SISR method is specifically modified and trained to 
effectively handle such challenging scenarios. In addition to evaluating 
the developed method with traditional image quality metrics such as 
PSNR and SSIM, we also assess its practical impact on a downstream 
object detection task. The results on the WIDER FACE face-detection 
dataset, using the YOLOv8 object detection model, show that applying 
the proposed SISR a pproach to images with spatially varying degra-
dations produces artifact-free outputs and enables object detectors to
achieve superior performance compared to their application on degraded
images.

Keywords: Single image super-resolution · Spatially varying 
degradation · Efficient · Deep learning

1 Introduction 

Single Image Super-Resolution (SISR) is a computer vision task aimed at enhanc-
ing the resolution of low-quality images. It has v arious applications, includ-
ing medical imaging, satellite image processing, and surveillance [31]. With the 
advent of deep learning, various methods based on Deep Neural Networks have 
been proposed and h ave surpassed traditional methods in v arious research areas.
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As a result, even in the research area of Super-Resolution (SR), new methods 
based on neural networks have been proposed, w hich are able to obtain better 
results than traditional techniques [29]. However, despite the progress made by 
deep learning models, many algorithms require considerable computational and 
memory capacity, making them difficult to adopt on a large scale or in contexts 
where resources are limited, as in the case of mobile devices and real-time appli-
cations. To this end, the NTIRE Efficient Super-Resolution Challenge [23]  was  
organized, in which participants develop Super-Resolution methods that are as 
efficient as possible, where efficiency is evaluated in terms of metrics such as run-
time, number of parameters, and computational complexity measured in FLOPs. 
These methods increase the resolution of their input images equally across the 
entire image; however, there are acquisition devices that generate images that 
do not have constant resolution. Certain sensors generate images that have spa-
tially variable resolution, as in the case of 360◦ cameras, cameras with fish-eye 
lenses, and even acoustic imaging devices. In these scenarios, it can be useful 
to obtain images with constant resolution without losing information about the 
details of the content. This topic is still poorly addressed in the literature; in 
fact, when super-resolution is described, the focus is on the ability o f the meth-
ods to increase resolution and image quality only in cases where degradation 
is constant, and these methods are not designed to work well in situations in 
which images have uneven resolution. The aim of this work is to evaluate the 
ability of Efficient Sup er-Resolution (ESR) methods to enhance images with
spatially varying resolution. In order to do so, the winner of the NTIRE 2024
Efficient Super-Resolution challenge [23], SPAN [ 27], has been modified, trained 
and tested for this purpose. The model has been trained for such situations and 
tested on various types of degradation to observe whether it could improve the 
quality of the input images. Lastly, to test the impact of the application of these 
methods, SPAN was used in combination with YOLOv8 [9] on a face detection 
dataset to which spatially varying degradations were applied. Various tests were 
conducted to assess the YOLO model’s ability on the face detection task when 
images p resent spatially varying resolution.

2 Related Works 

Efficient Single Image Super-Resolution. Thanks to the recent rapid devel-
opment of deep learning techniques, various Single Image Super-Resolution 
(SISR) methods based on neural networks ha ve been proposed and have out-
performed traditional approaches. SRCNN [4] is one of the first deep learning 
methods applied to the Super-Resolution task, and it is used to learn the map-
ping between a low-resolution image and its high-resolution version. A disadvan-
tage of SRCNN is that it is computationally inefficient as it works in the space 
of high-resolution images, since the input image is resized before being processed 
by the network. In order to address this problem, ESPCN [26] proposed the use 
of a subpixel convolutional layer called PixelShuffle, which has been used by var-
ious methods to increase image resolution only at the end of the method. Other
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methods used a different approach, such as SRGAN [13], which is one of the 
first and most influential applications of the Generativ e Adversarial Netwo rks
[7] for SISR. Recently, SwinIR [14] has been proposed, which is based o n Swin 
Transformers [16] and achieves state-of-the-art results while reducing the number 
of parameters. Despite the improvements, many methods still require intensive 
computations or many resources, which may hinder the ability to implement 
these models e ven on low-resource devices such as mobile devices. To this e nd,
the NTIRE Efficient Super-Resolution Challenge [23] was organized with the 
aim of designing methods that are as efficient as possible while still maintaining 
good quality results. During the various editions of this challenge, many meth-
ods have been proposed that are capable of achieving impressive results despite 
being relatively small and without requiring many resources [10, 15, 27, 30]. To 
do so, the various teams that participated in the challenge have employed vari-
ous tec hniques such as reparameterization, knowledge distillation, a nd network
pruning.

Spatially Varying Blur. Super-resolution can be conceptualized as a two-step 
process: image upsampling to increase spatial resolution, followed by deblur-
ring to enhance details and recover high-frequency information. While modern 
approaches integrate these steps into a unified process, where both resolution 
enhancement and detail recovery are jointly optimized, image upsampling is a 
simple task and most of the complexity lies in the image deblurring task. Some
approaches in the state of the art [5, 6] address the combined problem of Super-
Resolution and deblurring by explicitly breaking it down in to the two stages 
previously described, i.e. upsampling and deblurring.

Image deblurring is a classic, well-studied computer vision problem. CNN-
based models excel at learning data-driven representations and can adapt to a 
wide range of blur types without explicitly modeling the blur kernel. These meth-
ods have s hown remarkable performance improvements over traditional tech-
niques, particularly in handling real-world blurs [33]. However, most of the meth-
ods assume that the blur is uniform across the entire image. This task becomes 
more complex when the image presents a spatially varying blur. Several meth-
ods have been develop ed to address these challenges leveraging advancements in 
computational algorithms, optimization and deep learning. An early approach
[20] approximates the blur contained in various regions with a spatially varying 
kernel using a combination of spatially invariant ones. Then the deblurring is 
applied to the single regions. Early deep learning deblurring methods were then 
implemen ted to remove uniform blur from images such as the method proposed 
by Schuler et al. [25] which is divided into two stages: the first estimates the blur 
kernel and the latent image from the blurry image, the second utilizes the blurry 
image and the latent one to predict the blur kernel. However, real-world images 
may contain spatially variable blur. In order to address this type of degrada-
tion, various methods have been proposed, especially to restore blur caused by
moving objects [11, 19, 24]. Aljadaany et al. [ 2] proposed DrNet which does not 
require any estimate of the blur kernel and is further able to invert the effects 
of the blurring in b lind image recovery tasks allowing it to obtain state-of-the-
art results on the GoPro dataset [21] and results close to the state of the art
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on other datasets while maintaining a low inference time. Others address the 
problem of spatially varying blur in SR images, such as DMBSR [12], which is 
capable of achieving better results than other traditional SR methods on images 
with non-uniform blur.

3 Proposed Method 

3.1 Degraded Images 

Gathering real-world images that are characterized by spatially-varying resolu-
tion with their respective counterpart with uniform resolution is a very complex 
task, since it requires a pair of perfectly geometrically aligned images with two 
different resolutions in terms of spatial level of detail. For this reason, a syn-
thetically generated dataset is employed in this work, in order to facilitate the 
experiments discussed in the following sections. To have more control over the 
type of degradation employed, and the images obtained, it is necessary to gener-
ate synthetically degraded images with higher resolution in certain parts of the 
image and lower in others. Given that super-resolution can be conceptualized as 
a two-step process, namely image upsampling and image deblurring, with the 
second one being the most critical one, we focus solely on the latter. Three dif-
ferent types of spatially varying degradation are here used: linear, radial, and 
random. To simulate a change in resolution, the Gaussian filter and a series of 
masks are used to make a gradual transition from the original image to the image 
with the filter applied. The masks used are images with values in the [0,1] range, 
such that, when applied to the original image, if the values are 1, the output 
will be the same as the original, while if the values are 0 the output will be 
the image with the applied Gaussian filter. This results in a blur-like effect that 
varies along the dimensions of the image itself. Let Iorig be the original image,
mask the mask used with values between [0,1] and Iblur the image on which the
Gaussian filter was applied, then the degraded image Ideg is obtained as:

Ideg = Iorig mask + Iblur (1 − mask) (1) 

where denotes the element-wise multiplication. By doing so, it is possible to 
generate images that have a variable b lur-like effect by simulating a c hange in
resolution. Figure 1 shows an example of each degradation applied to a checker-
board image with the respective mask applied on it. In these cases, it is possible 
to observe the different spatially varying blur effects obtained using different 
degradations. In both linear and radial degradations the loss in detail is con-
stant from the center of the image, where it is present a higher resolution, to the 
sides where a stronger blur is applied. The difference between the two cases is 
that in the linear case the transition occurs only along the horizontal axis, while 
in the radial degradation this takes place also along the vertical axis. Likewise 
to the first case, with the random degradation, the transition occurs only along 
the width of the image; however, it is not constant but random. The random
mask applied to each image varies for each randomly degraded image. For this
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Fig. 1. Images obtained by applying the different degradations. The degraded images 
are obtained by applying the Eq.(1) with the respective mask on the ground truth 
image. The masks are those in the top right corner of each degraded image, a nd a pixel 
value closer to white means a pixel closer to the original.

purpose, random value distributions are used to generate masks, allowing the 
simulation of random transitions from the original images to the images with 
the Gaussian filter applied.

3.2 Method C hanges 

During the experiments described in the next sections, two versions of SPAN [27] 
have been used. The difference between the two is the number of feature channels 
employed and therefore the number of parameters. For convenience, the smaller 
model and winner of the challenge is denoted SPAN-s, while the bigger one is 
referred to as SPAN. In the first case, the number of feature channels employed 
by the convolutional layers is 28 and in the second is 48. In both cases, the models 
were initially trained for 4× upsampling, with a 4× PixelShuffle as the final layer. 
However, since the image dimensions in our case remain unchanged, the models 
have been adapted to generate outputs with the same resolution as the input 
(i.e. the PixelShuffle layer was removed) while enhancing the level of detail. Then 
the mo dels have been trained to handle the new spatially varying degradations. 
Both the versions have been trained with the same training configuration, that 
is: batch size of 16, initial learning rate of 1e−4 that is reduced every 10,000 
iterations by a factor of 0.1, L1 loss function, Adam optimizer and 20,000 as the
number of training iterations. The working environment employed during the
following tests utilizes a Nvidia RTX 4070S GPU.

4 Experimental Results 

4.1 ESR Methods for Spatially V arying R esolution

To assess the ability of Efficient Super-Resolution (ESR) models in handling 
images with spatially varying resolution, the S PAN models, modified as d escribed
in Sect. 3.2, have been trained from scratch on degraded images. The training 
was conducted using three versions of the DIV2K dataset [1], each modified to
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Table 1. PSNR and SSIM obtained by applying the methods to the images in the test 
set. The b est values contained in each column are listed in bold.

Model BSD100 
Linear Radial Random 

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ 
Degraded 30.1696 0.9078 27.2973 0.8140 31.4426 0.9137 
SPAN 30.9011 0.9210 34.9025 0.9608 32.4254 0.9306 
SPAN-s 31.3135 0.9310 31.8414 0.9287 32.5441 0.9409 

Model Manga109 
Linear Radial Random 

noentry PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ 
Degraded 28.8745 0.9450 25.7212 0.8878 29.2848 0.9368 
SPAN 30.2921 0.9582 35.4847 0.9797 30.9768 0.9548 
SPAN-s 30.4650 0.9604 31.5764 0.9633 30.8488 0.9547 

Model Set5 
Linear Radial Random 

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ 
Degraded 31.4673 0.9488 29.1126 0.9081 30.2307 0.9093 
SPAN 32.6783 0.9588 37.2752 0.9801 31.6903 0.9276 
SPAN-s 33.2132 0.9638 34.5581 0.9684 32.5492 0.9457 

Model Set14 
Linear Radial Random 

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ 
Degraded 29.9072 0.9192 27.5581 0.8575 31.9502 0.9425 
SPAN 30.4842 0.9276 35.2481 0.9691 32.6576 0.9516 
SPAN-s 31.1062 0.9402 32.4917 0.9540 32.4463 0.9568 

Model Urban100 
Linear Radial Random 

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ 
Degraded 22.6222 0.7307 21.9710 0.6920 22.4069 0.7141 
SPAN 25.4023 0.9381 24.8156 0.8189 25.6190 0.8388 
SPAN-s 24.6988 0.8159 24.5486 0.8114 24.4617 0.8052 

incorporate a specific degradation: linear and radial degradations were applied 
using the same mask across all images, while for random degradation, a unique 
random mask was generated for eac h image. Similarly, for testing, three degraded 
versions were created for each of the BSD100 [17], Manga109 [ 18], Set5 [ 3], Set14 
[ 32], and Urban100 [ 8] d atasets. 

Table 1 reports the PSNR and SSIM values, computed by comparing the 
degraded images and the outputs of the different methods against the original 
images. The results indicate that the mod els are able to effectively enhance image 
quality, making them more similar to the original coun terparts and yielding
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Table 2. PSNR value obtained by applying the SPAN-s model trained to handle the 
degradations present in the first column, on images degraded with the degradation 
present i n the first row. The Average column contains the mean value obtained for 
eac h ro w.

Test 
Train Linear Radial Random Average 
Linear 35.5975 30.2463 35.6630 33.8197 
Radial 31.9280 36.5738 31.6145 33.5968 
Random 35.4167 30.4630 35.5504 33.8725 

higher PSNR and SSIM values than the degraded images. Moreover, despite the 
differences in model parameters, both versions are able to successfully improve 
degraded images achieving comparable PSNR and SSIM scores, with the only 
exception being SPAN-s trained on radially degraded images, which exhibits 
lower PSNR v alues compared to its larger coun terpart.

Further experiments were conducted to assess the SPAN-s model’s gener-
alization ability on degradations it was not specifically trained f or, with the 
corresponding PSNR values reported in Table 2. As expected, the highest PSNR 
values appear along the diagonal, corresponding to models tested on the same 
degradation type they were trained for. However, when applied to different degra-
dation types, the models yield varying results. Notably, models trained on linear 
degradation perform well not only on their own degradation but also on random 
degradation, and vice versa. This is likely due to the fact that, unlike radial 
degradation, both linear and random cases involve resolution changes only along 
the image width. The radial case, on the other hand, exhibits uneven resolution 
even along the height of the image. Despite this, it still achieves better results 
on other degradation types when compared with the PSNR obtained by the 
other two methods in the radial degradation case. On average the models obtain 
similar results despite the differences in terms o f degradations.

Figure 2 illustrates visual results for an image extracted from the test set. 
Notably, along the edges in both the linear and radial cases, certain details 
remain partially unrecovered. Therefore, even though the models are able to 
restore many of the details contained in the images, they still struggle in the 
areas where the degradation is stronger.

4.2 Efficient Super-Resolution for F ace Detection 

In order to evaluate the effectiveness of applying an Efficient Super-Resolution 
(ESR) method to images with spatially varying resolution, the previous discussed 
models were integrated into a face detection pipeline as preprocessing step. A 
subset of the WIDER Face dataset [28] was used for both training and evalua-
tion, applying the degradations described in Sect. 3.1. The dataset was divided 
into 1,000 images for training, 200 for validation, and 500 for testing. Three dif-
ferent versions of YOLOv8 [ 9], with different sizes, were used a s object detection 
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Fig. 2. Example result: a) original image; b) images degraded with their respective 
masks (linear, radial, and random); c) images restored with SPAN-s; d) SSIM value 
maps obtained by the original image and the restored one; e) the resp ective PSNR 
value maps. For all maps, a brighter color means larger errors, i.e. a lower lev el of 
details.

model to check the consistency of the results: Yolo8n, Yolo8s and Yolo8m. These 
models were fine tuned for 20 epochs using the same training configuration, with 
a learning rate of 0.01 and AdamW as the optimizer. Training was conducted 
on three different sets: the original images, the degraded images, and the images 
restored using the Super-Resolution methods. The top part of Table 3 reports the 
results obtained by the YOLO models on the restored test set,comparing their 
performance with models trained on the original (unmodified) images, degraded 
images, and restored images. The results are reported in terms of: Precision, 
indicating how many detections were correct; Recall, indicating the ratio of the 
instances identified by the model with respect to all i nstances of objects; mAP50,
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Table 3. Results obtained by the different versions of YOLO on the considered WIDER 
FACE Test set. Top table: the Original rows contain the values obtained by train-
ing the different versions of YOLO on the original images (without the degradation); 
the Degraded rows contain the results obtained by the YOLO models trained on the 
degraded images; the SPAN and SPAN-s rows contain the results obtained by the 
YOLO models trained on the restored images using the respective model. Bottom table: 
results obtained by testing the v ersions of YOLO trained using the original images on 
the degraded images and on the images restored using the SPAN and SPAN-S models. 
In bold are marked the be st results obtained by the models trained on the restored or 
degraded images, while the second b est are underlined.

Model Linear Radial Random 
P R mAP50 mAP50-95 P R mAP50 mAP50-95 P R mAP50 mAP50-95 

Original Yolo8n 0.783 0.480 0.561 0.282 0.783 0.480 0.561 0.282 0.783 0.480 0.561 0.282 
Degraded Yolo8n 0.740 0.455 0.518 0.255 0.737 0.450 0.519 0.252 0.785 0.439 0.518 0.255 

SPAN Yolo8n 0.756 0.471 0.544 0.271 0.788 0.463 0.544 0.268 0.774 0.476 0.546 0.265 
SPAN-s Yolo8n 0.767 0.453 0.530 0.259 0.772 0.447 0.530 0.263 0.778 0.459 0.533 0.259 

Original Yolo8s 0.795 0.508 0.603 0.316 0.795 0.508 0.603 0.316 0.795 0.508 0.603 0.316 
Degraded Yolo8s 0.779 0.460 0.546 0.282 0.797 0.460 0.555 0.281 0.881 0.452 0.550 0.283 

SPAN Yolo8s 0.782 0.494 0.586 0.301 0.805 0.499 0.594 0.306 0.789 0.490 0.582 0.300 
SPAN-s Yolo8s 0.790 0.488 0.574 0.295 0.797 0.487 0.583 0.296 0.771 0.481 0.565 0.291 

Original Yolo8m 0.825 0.514 0.618 0.331 0.825 0.514 0.618 0.331 0.825 0.514 0.618 0.331 
Degraded Yolo8m 0.786 0.486 0.571 0.298 0.807 0.466 0.568 0.299 0.770 0.477 0.564 0.292 

SPAN Yolo8m 0.794 0.505 0.589 0.309 0.806 0.507 0.604 0.317 0.804 0.502 0.590 0.306 
SPAN-s Yolo8m 0.783 0.496 0.591 0.311 0.814 0.489 0.593 0.312 0.779 0.493 0.580 0.303 

Model Linear Radial Random 
P R mAP50 mAP50-95 P R mAP50 mAP50-95 P R mAP50 mAP50-95 

Original Yolo8n 0.783 0.480 0.561 0.282 0.783 0.480 0.561 0.282 0.783 0.480 0.561 0.282 
Degraded Yolo8n 0.757 0.447 0.525 0261 0.762 0.426 0.506 0.251 0.756 0.437 0.517 0.255 

SPAN Yolo8n 0.785 0.463 0.549 0.274 0.779 0.479 0.553 0.276 0.768 0.479 0.550 0.275 
SPAN-s Yolo8n 0.749 0.474 0.544 0.271 0.760 0.470 0.543 0.270 0.767 0.456 0.537 0.266 

Original Yolo8s 0.795 0.508 0.603 0.316 0.795 0.508 0.603 0.316 0.795 0.508 0.603 0.316 
Degraded Yolo8s 0.816 0.440 0.551 0.285 0.772 0.431 0.535 0.275 0.761 0.447 0.542 0.276 

SPAN Yolo8s 0.822 0.477 0.587 0.306 0.819 0.486 0.594 0.308 0.802 0.488 0.587 0.304 
SPAN-s Yolo8s 0.806 0.475 0.577 0.298 0.766 0.492 0.579 0.299 0.774 0.472 0.564 0.290 

Original Yolo8m 0.825 0.514 0.618 0.331 0.825 0.514 0.618 0.331 0.825 0.514 0.618 0.331 
Degraded Yolo8m 0.807 0.472 0.565 0.298 0.794 0.464 0.559 0.290 0.799 0.459 0.559 0.291 

SPAN Yolo8m 0.812 0.501 0.603 0.321 0.797 0.517 0.611 0.324 0.797 0.504 0.601 0.316 
SPAN-s Yolo8m 0.810 0.488 0.593 0.313 0.793 0.502 0.596 0.313 0.821 0.465 0.577 0.305 

i.e. mean average precision calculated at an intersection over union (IoU) thresh-
old of 0.50; mAP50-95, i.e. the average of the mean average precision calculated 
at varying IoU thresholds, ranging from 0.50 to 0.95 [ 22]. Since we are interested 
in the overall assessment of model performance, the reference metric to consider 
is mAP. The obtained results show that, in all observed cases, m odels trained 
on images enhanced by a Super-Resolution method outp erform those trained 
directly on degraded images. 

More specifically, models incorporating the trained Super-Resolution meth-
ods to correct degradations achieve higher mAP values than those that do 
not, though their performance remains s lightly below that of models trained 
on the original images. Figure 3 provides visual examples of face detections 
using SPAN-s for restoration and Yolo8n for detection. These examples high-
light that applying restoration methods leads to more accurate detections and 
an increased number of detected faces. The bottom part of Table 3 also repo rts 
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Fig. 3. Results obtained by using Yolo8n in the various analyzed cases. Where there 
is a stronger degradation (e.g., the areas in the red boxes) the methods that use the 
restored images detect more faces or are m ore accurate in localization. (Color figure 
online) 

the results of YOLO models trained on original images and tested on both 
degraded and restored versions. In these cases, the models consistently achieve 
better performance on enhanced images than on degraded ones. This indicates 
that, even when trained s olely on unmodified images, the models benefit from 
Super-Resolution preprocessing, improving detection performance despite not 
fully recovering a ll lost details. 

5 Conclusions 

This paper presents an investigation of the use of Efficient Super-Resolution 
(ESR) techniques to restore images with spatially varying degradations. By lever-
aging lightweight ESR models, we demonstrated their effectiveness in recovering 
image details and enhancing the visual quality of degraded images, particularly 
in scenarios with uneven resolution artifacts. Furthermore, we showcased the 
practical impact of ESR-restored images on downstream tasks, such as object 
detection, using the WIDER F ACE dataset in conjunction with YOLOv8. The 
results underline how applying ESR methods significantly improves object detec-
tion performance compared to models operating on degraded images, though 
there is still a gap compared to models trained on pristine data. 

While ESR models offer a computationally efficient solution, their perfor-
mance is currently surpassed by more advanced methods, such as Transformer-
based super-resolution models (e.g., SwinIR). Future work could focus on inte-
grating lightweight Transformer-based architectures to better handle spatially 
varying d egradations while maintaining efficiency. Another key limitation of this 
study is the reliance on s ynthetic datasets to simulate varying resolutions due 
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to the lack of real-world datasets containing such degradations. Developing a 
dedicated real-world dataset, including images captured with devices prone to 
spatially varying degradations, such as 360◦ cameras, fish-eye lenses, or sonars, 
would provide a more robust basis for evaluation. As future work we plan to 
extend our method to other application domains, such as medical imaging, 
remote sensing or autonomous driving, which often encounter spatially varying 
resolution issues due to the nature of sensors used (e.g., sonars, radars, lidars, 
optical and electron microscopes), and where enhanced resolution may signif-
icantly improve interpretability and decision-making. We also plan to extend 
our method without making any assumptions about the degradation kernel thus 
permitting to experiment with r eal data even in absence of a higher resolution 
groundtruth. 
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