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Abstract. The ColorChecker dataset is the most widely used dataset for evaluating
and benchmarking illuminant-estimation algorithms. Although it is distributed with a
3-fold cross-validation partitioning, no procedure is defined on how to use it. In order
to permit a fair comparison between illuminant-estimation algorithms, in this short cor-
respondence we define a fair comparison procedure, showing that illuminant-estimation
errors of state-of-the-art algorithms have been underestimated by up to 33%. We also
compute the lower error bounds that can be reached on this dataset, which demonstrates
that the existing algorithms have not yet reached their maximum performance potential.

1 Introduction
The ColorChecker dataset (CC) is a benchmark dataset for illuminant estimation. It was first introduced
by Gehler et al. in 2008 [1] and it is still widely used. It contains a total of 568 raw RGB images of
indoor and outdoor scenes taken with two cameras, namely Canon 1D (86 images) and Canon 5D (482
images), and consists of typical photographic scenes. Over the years a linear re-processed version of the
ColorChecker dataset has been released [2] and has become the reference version of the dataset.

The ground truth, i.e., the global illuminant color, associated with each image is defined as the RGB
response from the achromatic patches of the eponymous Macbeth ColorChecker chart, that is placed
in each scene and omitted during testing. The corners of the ColorChecker chart and those of all its
patches were manually annotated. However, recent advancements in the literature (e.g., [3, 4]) have
introduced automatic techniques that have demonstrated high accuracy in ground truth generation,
suggesting that these methods may serve as viable alternatives to manual annotation in future studies on
larger datasets and to ensure coherent annotation across datasets. Figure 1 shows some sample images
from the ColorChecker dataset.

In order to properly compare the performance of different illuminant-estimation algorithms on a
common ground, in 2018 Hemrit et al. [5, 6] joined efforts to establish a new, recommended ground truth
(REC) and made it available to the research community.

https://creativecommons.org/licenses/by/4.0/
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Figure 1: Some sample images within the CC dataset (gamma corrected for better visualization)

Since its original version, the ColorChecker dataset has been distributed with a 3-fold cross-validation
partitioning. Unfortunately, no procedure was given on how to use this partitioning, leading to a potential
data leakage between training and test folds with researchers sometimes tweaking model hyper-parameters
on the test set1. This might not have been a problem when illuminant estimation algorithms had only
a few parameters/hyperparameters to tune (e.g., statistics-based methods [8] or parametric methods
[9, 10]), but it has become a problem now that the vast majority of new algorithms are based on deep
learning with a number of parameters to train ranging from a few thousands [11, 12, 13] up to several
millions [7, 14, 15], thereby increasing the likelihood of overfitting to the test partition.

In this paper we define a fair comparison procedure for illuminant-estimation algorithms on the
ColorChecker dataset. We show that the angular error statistics of state-of-the-art algorithms have
been underestimated by up to about 33%. Under the assumption that the illuminant is spatially in-
variant, we also compute the lower bound errors that can be achieved on the ColorChecker dataset,
showing that they have not been reached. Finally, we create a repository (� https://github.com/
simone-255-255-255/fairCC) reporting the performance of several state-of-the-art algorithms under
the proposed fair-comparison procedure.

2 A fair comparison procedure
The suggested procedure for fair comparison of illuminant-estimation algorithms is reported in Figure 2.
It begins with the original 3-fold cross-validation partitioning. In each cross validation round, two folds
are used to train the model, while the third one is used exclusively for testing.

For those algorithms that need a validation set either to tune some hyperparameters, to select the
best model, or to determine the termination epoch of the training, a validation set is created from the two
training folds and excluding the test fold, thus preventing any data leakage and ensuring a more accurate
estimate of the generalization error. To this end, for each cross-validation round, a further 80%-20% split
is provided in the repository.

If the algorithm uses some forms of data augmentation in training, the unaugmented training set can
be used for validation.

Since many illuminant estimation algorithms are stochastic, in order to avoid reporting cherry-picked
results, we propose averaging the reported statistics over at least three independent runs. Moreover, as
already commonly done, the ColorChecker chart in each image must be masked by setting the pixel values

1Official repository of [7], FAQ question (d): https://github.com/yuanming-hu/fc4. Last accessed May-2025.
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Figure 2: Schematic representation of the fair ColorChecker comparison procedure: it begins with the
original 3-fold cross-validation partitioning. In each cross validation round, two folds are used to train
the model, while the third one is used exclusively for testing. Predictions on the three test folds are
recombined and error statistics are computed for the whole dataset. The training/testing procedure is
repeated n times on the same split and the final error statistics are computed as the average over the n
rounds to account for method’s stochasticity.

Table 1: Performance comparison in terms of angular error on the ColorChecker dataset for several illu-
minant estimation algorithms with fair and unfair training or hyperparameters setting for some statistics-
based algorithms (top) and some learning-based algorithms (bottom). Average and maximum percentage
changes (∆%) computed on all the unfair statistics with respect to corresponding fair ones are also
reported.

Fair Unfair ∆% wrt Fair
Method Mean Med. Tri-m. B-25 W-25 95-P 99-P Max Mean Med. Tri-m. B-25 W-25 95-P 99-P Max Avg. Max.
SoG [9] 4.07 2.70 3.14 0.55 9.79 12.20 17.00 21.89 3.95 2.54 3.01 0.56 9.62 12.44 16.53 20.48 -2.49% -6.43%
GGW [9] 4.05 2.60 3.06 0.56 9.78 12.30 16.97 21.16 4.00 2.62 3.02 0.55 9.73 12.44 16.94 20.58 -0.57% -2.74%
GE1 [9] 3.89 2.77 3.10 0.78 8.83 11.09 14.57 22.60 3.87 2.84 3.11 0.84 8.60 10.99 14.88 20.18 -1.21% -10.68%
GE2 [9] 3.89 2.88 3.13 0.75 8.80 10.90 14.02 23.10 3.87 2.77 3.04 0.79 8.73 10.92 14.37 22.43 -1.25% -4.23%
FFCC (model J) [16] 2.23 1.45 1.59 0.35 5.46 7.33 10.85 17.27 1.79 0.98 1.19 0.27 4.63 5.83 11.02 17.46 -16.49% -32.52%
FC4 [7] (avg 3 runs) 2.14 1.44 1.57 0.40 5.08 6.50 12.75 15.28 2.11 1.45 1.58 0.43 4.94 6.33 10.80 16.02 -1.02% -15.29%
FC4 [7] (best run) 2.05 1.33 1.46 0.38 4.95 6.19 11.98 15.56 1.99 1.31 1.47 0.42 4.74 6.48 9.76 14.31 -2.30% -18.53%

to zero in RGB space before applying any illuminant-estimation algorithm, i.e., both in the training and
in the testing phase.

3 Re-evaluation of illuminant estimation algorithms
Since in illuminant estimation it is more important to measure the color of the illuminant rather than
its magnitude, illuminant estimation performance is usually measured in terms of angular error between
the RGB values of the estimated illuminant iest and the RGB values of the ground truth illuminant igt

[17, 18]. The recovery angular error errrec is therefore defined as:

errrec = cos−1
(

igt · iest

||igt|| ||iest||

)
(1)

Table 1 reports the performance in terms of recovery angular error on the ColorChecker dataset for several
illuminant estimation algorithms when hyperparameters/parameters are trained in the proposed fair way,
and they are compared to the performance when hyperparameters/parameters are trained in an unfair
way. For the unfair results we intentionally cause a data leakage: for statistics-based and parametric
methods we optimize/train the algorithms based on the test fold performance, while for training-based
methods and methods based on deep learning we use the test fold for best model selection. For the
stochastically-trained FC4 [7] we evaluate both a 3-run average version, and a best-run version.

For both fair and unfair training setups we report several commonly used angular error statistics:
average, median, tri-mean, best 25%, worst 25%, 95th percentile, 99th percentile, and maximum. In order
to compare the fair and unfair performance, the percentage changes (∆%) of all the unfair statistics
with respect to corresponding fair ones are computed, and their average and maximum values across the
statistics considered are reported.



6th London Imaging Meeting (LIM 2025)
Journal of Physics: Conference Series 3128 (2025) 012014

IOP Publishing
doi:10.1088/1742-6596/3128/1/012014

4

Table 2: Lower bound angular errors on the ColorChecker dataset: intra-patch (a) and inter-patch (b).
We report per-image statistics (rows of each table), i.e. how the distances between pseudo and REC
ground truths are summarized per image, as well as dataset statistics (columns of each table).

Dataset-level statistics
Image-level statistics Mean Med. Tri-m. B-25 W-25 95-P 99-P Max
Mean 0.057 0.045 0.048 0.023 0.109 0.129 0.209 0.377
Median 0.054 0.044 0.045 0.021 0.105 0.132 0.186 0.419
Max 0.095 0.075 0.079 0.037 0.189 0.224 0.391 0.572
Std 0.029 0.022 0.023 0.010 0.060 0.075 0.131 0.214

(a)

Dataset-level statistics
Image-level statistics Mean Med. Tri-m. B-25 W-25 95-P 99-P Max
Mean 0.92 0.68 0.77 0.39 1.76 2.09 2.92 4.78
Median 0.61 0.46 0.50 0.30 1.19 1.52 2.51 4.59
Max 2.15 1.42 1.71 0.71 4.66 5.57 6.99 9.95
Std 0.78 0.48 0.60 0.21 1.80 2.20 2.83 4.05

(b)

From the results reported in Table 1 we can observe how an unfair use of the ColorChecker dataset
can lead to underestimating the angular error statistics for simple statistics-based algorithms by up to
3% on average, while in the worst case, a single angular error statistic can be underestimated by about
11%. For learning-based algorithms, the error statistics on average can be underestimated by as much as
16%. In the worst case instead, a single angular error statistic can be underestimated up to 32%.

4 Computation of the lower bound errors on the ColorChecker dataset
In this section, we assess whether or not recent illuminant-estimation algorithms have reached the lower
bound of the possible error on the ColorChecker dataset. This lower bound error is computed under
the assumption that the illumination in each image is spatially invariant, although this assumption is
violated to a certain extent in almost every image of any existing dataset categorized as single illuminant
due to the presence of shadows and inter-reflections [19].

Two different analyses are carried out with the aim of measuring how noisy the ColorChecker ground
truth is: an intra-patch and an inter-patch analysis.

4.1 Intra-patch analysis
In the intra-patch analysis, we divide the neutral patch selected as REC ground truth (i.e., the brightest
neutral patch not containing any clipped pixel) for each image into five sub-patches having the same
size: four non-overlapping sub-patches, and one central sub-patch having the same size. From each sub-
patch a new illuminant is extracted. Therefore, for each image, we have the REC ground truth and five
additional pseudo-ground-truth illuminants. The intra-patch analysis procedure is depicted in the first
image in the top row of Figure 3. The angular errors between each pseudo-ground-truth illuminant and
the REC ground truth are computed, and for each image several statistics are computed: average, median,
maximum, and standard deviation. These statistics are accumulated over the whole ColorChecker dataset
and summarized using the same error statistics used in the previous section. The results are reported in
Table 2(a).

4.2 Inter-patch analysis
In the inter-patch analysis, we consider all the neutral patches that are not clipped according to [2] (i.e.,
they have no digital count higher than 3300). Then, from each not-clipped patch, a new illuminant is
extracted. Therefore, for each image we have the REC ground truth and up to five pseudo-ground-truth
illuminants. The inter-patch analysis procedure is depicted in the first image in the bottom row of Figure
3. The same procedure carried out for the intra-patch case is then applied: the angular errors between
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each pseudo-ground-truth illuminant and the REC ground truth are computed, image-level statistics
are accumulated, summarized at dataset level, and reported in Table 2(b). The results show that only
the maximum distance in the inter-patch setup has error statistics close to those of recent illuminant-
estimation algorithms.

4.3 Actual distance from lower bound errors
In order to measure how far the current results are from the lower bound errors, for each image we project
the intra-patch and inter-patch pseudo-ground-truths on the Maxwell triangle with chromaticities:{

x =
√

3(r − g)
y = r + g − 2b

(2)

together with the REC ground truth, and compute their respective convex hulls. A visual summary
of the complete procedure is shown in Figure 3 for both the intra-patch and inter-patch analyses. We
then compute the ratio of images in the ColorChecker dataset for which the illuminant estimated by an
algorithm falls within these convex hulls. The results are reported in Table 3.

Figure 3: Example of convex hull computation in the Maxwell triangle for REC and pseudo ground
truths: intra-patch (top), inter-patch (bottom) for an image in the ColorChecker dataset. For each row
the first image shows six regions used to compute the different ground truths. The second image maps
the computed ground truths in the chromaticity space defined by Maxwell triangle, represented as color
dots with the same color coding used to highlight the ground truth regions. The third image is a zoomed
version of the second one, to better show the ground truth chromaticities, with a black line showing their
computed convex hull.

We observe that for the intra-patch configuration, the lower bound errors are reached in at most
0.53% of the images even considering the unfair setup. In the inter-patch configuration instead, the lower
bound errors are reached in at most 7.22% of the images.

The results thus confirm that current illuminant-estimation algorithms are still far from reaching the
lower bound errors on the ColorChecker dataset, and thus ColorChecker is still distant from its end of
life.

Further analysis could also be performed by counting in how many images the estimated illuminant
is equally physically possible as the ground truth, i.e., how many times it belongs to the feasible set of
illuminants [20].
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Table 3: Ratio of images of the ColorChecker dataset on which the estimated illuminant falls within the
convex hull of the pseudo and REC ground truths.

Intra-patch Inter-patch
Method Fair Unfair Fair Unfair
SoG [9] 0.18% 0.18% 2.11% 2.29%
GGW [9] 0.00% 0.00% 2.64% 2.64%
GE1 [9] 0.00% 0.00% 0.53% 0.70%
GE2 [9] 0.35% 0.00% 0.53% 0.35%
FFCC (model J) [16] 0.35% 0.53% 5.46% 4.40%
FC4 [7] (average over 3 runs) 0.06% 0.23% 4.28% 5.63%
FC4 [7] (best run) 0.00% 0.00% 4.75% 7.22%

5 Conclusion
The ColorChecker dataset is a benchmark dataset for illuminant-estimation algorithms that is distributed
with a 3-fold cross-validation partitioning. Unfortunately, no standardized procedure exists on how to
use it, making the comparison of different algorithms problematic.

In order to permit a fair comparison, in this paper we define a fair comparison procedure for illuminant-
estimation algorithms on the ColorChecker dataset. We re-evaluate the performance of several state-of-
the-art algorithms, showing that the angular error statistics were underestimated by up to about 33%.

We created a public repository to report the fair performance of more algorithms in the state of the
art.

Finally, we also computed the lower bound errors that can be reached on the ColorChecker dataset
by measuring how noisy is the ColorChecker ground truth, under the assumption of spatially invariant
scene illumination. From our analysis we observe that the lower bound errors are reached in at most
0.35% and 5.46% of the images in the intra-patch and inter-patch configuration respectively.
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